Improving the interpretability of TSK fuzzy models by combining global learning and local learning
نویسندگان
چکیده
The fuzzy inference system proposed by Takagi, Sugeno, and Kang, known as the TSK model in fuzzy system literature, provides a powerful tool for modeling complex nonlinear systems. Unlike conventional modeling where a single model is used to describe the global behavior of a system, TSK modeling is essentially a multimodel approach in which simple submodels (typically linear models) are combined to describe the global behavior of the system. Most existing learning algorithms for identifying the TSK model are based on minimizing the square of the residual between the overall outputs of the real system and the identified model. Although these algorithms can generate a TSK model with good global performance (i.e., the model is capable of approximating the given system with arbitrary accuracy, provided that sufficient rules are used and sufficient training data are available), they cannot guarantee the resulting model to have a good local performance. Often, the submodels in the TSK model may exhibit an erratic local behavior, which is difficult to interpret. Since one of the important motivations of using the TSK model (also other fuzzy models) is to gain insights into the model, it is important to investigate the interpretability issue of the TSK model. In this paper, we propose a new learning algorithm that integrates global learning and local learning in a single algorithmic framework. This algorithm uses the idea of local weighed regression and local approximation in nonparametric statistics, but remains the component of global fitting in the existing learning algorithms. The algorithm is capable of adjusting its parameters based on the user’s preference, generating models with good tradeoff in terms of global fitting and local interpretation. We illustrate the performance of the proposed algorithm using a motorcycle crash modeling example.
منابع مشابه
A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING
In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملLocal identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems
This work presents the use of local fuzzy prototypes as a new idea to obtain accurate local semantics-based Takagi–Sugeno–Kang ~TSK! rules. This allow us to start from prototypes considering the interaction between input and output variables and taking into account the fuzzy nature of the TSK rules. To do so, a two-stage evolutionary algorithm based on MOGUL ~a methodology to obtain Genetic Fuz...
متن کاملImproving the Interpretability of Support Vector Machines-based Fuzzy Rules
Support vector machines (SVMs) and fuzzy rule systems are functionally equivalent under some conditions. Therefore, the learning algorithms developed in the field of support vector machines can be used to adapt the parameters of fuzzy systems. Extracting fuzzy models from support vector machines has the inherent advantage that the model does not need to determine the number of rules in advance....
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Fuzzy Systems
دوره 6 شماره
صفحات -
تاریخ انتشار 1998